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An equation of evolution for a heavy particle immersed in a solvent of lighter particles 
is derived for the case when the system suffers gradients of temperature composition, 
or velocity. The derivation unifies the theory by applying the same methods which 
have proved useful in the uniform case. The final equation contains some new terms 
due to concentration gradients in the solvent, and is applicable to the case when the 
heavy particles are present at finite concentration and interact with each other. 

KEY W O R D S :  Brownian motion; Molecular theory; Nonuniform system; Gradients 
of temperature, velocity, concentration; Local equilibrium. 

In  recent  years,  the molecular  theory  o f  the Brownian  mo t ion  o f  heavy par t ic les  in 
a fluid has been pu t  on a f irm foot ing,  cl-3) In a preceding  pape r  (4~ (hereafter  referred 

to as I), we showed how the methods  used for  the case o f  Brownian  par t ic les  (hence- 
for th  called B-particles) a t  infinite d i lu t ion  could  be extended to cover  the case o f  
B-part icles at  finite concent ra t ion .  In  the present  pape r  we wish to extend these same 
methods  to the case of  Brownian  mo t ion  in a nonun i fo rm m e d i u m  where there m a y  
be gradients  of  tempera ture ,  concent ra t ion ,  or  fluid velocity. 

This p rob l em has been t rea ted  by  varying methods  by  Nicolis ,  (5~ Misguich ,  (G~ 
and  Zuba rev  and  Bashki rov  (7~ for  the case o f  B-part icles  a t  infinite di lut ion.  Our  
pu rpose  is twofold;  first, to unify the theory  by  t reat ing the nonhomogeneous  p rob l e m 
by the homogeneous  case, and  second to indicate  how the theory  m a y  be extended to 
nonzero  concent ra t ions  o f  B-particles.  

The  system under  cons idera t ion  is N + 1 B-part icles of  mass  M immersed  in 
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a medium of n lighter particles�9 The medium particles, henceforth called the solvent, 
may have various masses, charges, and interactions. It will be necessary to have these 
differences explicit in the notation at certain points, but whenever possible without 
risk of confusion we omit subscripts related to species labels. The Hamiltonian and 
Liouville operators are as given in I [Eqs. (2) and (3)]. The system may contain steady 
gradients of  concentrations, temperature, and velocity. 

As in I, we seek an equation for 

Px = f pu+,+~ d{n} d{N} (1) 

where the distribution function p~+n+z satisfies 

�9 OpN+n+1 
O ~  - -  LpN+~+z (2) 

Exactly as in I, we define projection operators P and Q = 1 -- P by 

P = z f d{n} d{N} (3) 

where A is a function which is independent of Po and normalized to unity. Defining 
f = PP~+N+t, g = QPN+n+Z we find (8) 

f~ 
~f P L f  @ PL exp[--iOLt] g(O) -- iPL exp[--iQL(t -- t')] OLf(t ' )dt '  (4) i ~ =  o 

We must now choose 2t to reflect the nonuniform nature of the system. Clearly 
the choice made in I and References 1-3 is inappropriate here. We choose 2, to be 
the local equilibrium distribution function in the field of particle zero. Specifically, 

I ,,, "~ = Zo exp --  fiJ 2m~ 
~=i 5=1 

U~s(R~)/?j + ~ v~(Rj) (5) 
ez,13=l j=l /e=l e=l j=l 

where Z0 is a normalization factor and v~(Rj) is /z~(Rj)fi(R~). Greek letters label 
species while latin letters label particles. If  the B-particles are present at finite con- 
centration, then they must be counted as one of the species present. The interaction 
of the solvent particles with B-particle zero is included. That is, the potential energy 
sums involving the B-particles must start withj  = 0. From here on, the main difference 
between the present development and that for homogeneous systems is that LF)t =/= 0 
for our choice of A, i.e., local equilibrium is not a steady-state solution of the Liouville 
equation. 

First of  all, we choose p.~+N+t(O) to be the local equilibrium distribution function 
for the entire system. As is well known, there are then no fluxes at time t = 0, but the 
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fluxes will develop in a very short time. This is a very commonly used initial condition, 
and should certainly be entirely adequate for transport theory. 

We now expand the exponential operator in (4) in powers of LB, keeping only 
the lowest-order term. The justification for this has already been discussed in I. 
Noting t h a t f  = )tpz and that PLF = 0, we find that (4) reduces to 

0pl P0 A-@LB f exp[--iOLF(t -- t')] OLZpl(t') dt' (6) 
~--t- -]- M "  Vpl -3 ( F o > t  �9 ~ P o  - -  o 

where (Fo>~ is the mean force on particle zero computed with the local equilibrium 
distribution function ~; in true equilibrium, (Fo)~ vanishes, of course. Since the 
Po " Vo term in L~ commutes with t3 and since P ~  = 0, only the Fo �9 ~/~Po term in 
the leftmost LB operator on the right of Eq. (6) is effective. Calling the left-hand 
member ~ tp t ,  we have 

�9 
~ p z  = 1 ~P~o " f d{n} d{N} Fo exp[--iLF(t -- t')] ~L)tp~(t') dt' (7) 

It only remains to analyze the last QL operator. 
We first note that LF does not operate on Pa, which depends on R 0 and P0 only. 

Therefore we have 

(LB + LF) Apz = (LrA) Pa -}- (LBA) Pi + ALBpz 

Furthermore, 

(8) 

~L~A = LBA = --i(Po/M) " V0)t (9) 

since A does not depend on P0 �9 Also, by a direct computation 

QAL~pz = --i(F0 -- (Fo>~)'Spa/~Po (10) 

where (Fo>~ has the same meaning as in Eq. (6). 
We now have to compute LFA. This has, however, been done many times pre- 

viously 2 and we need not repeat the calculation here�9 The result, to first order in 
gradients, is 

iLrA = f fl(r)IS �9 Vu(r) + 0 "  VlnT(r) 

+ ~ ~ ~fVrv~(r )3( r - -Rs)  I r~+N+z'~(eq) ~da r 
a=l  j = l  

- .0 F 0 3 o  - .0"  Y a oGGo. Vo3 (11) 

Here 3 = (kT)-*, Q is the energy flux vector, and S is the momentum flux tensor. 
The exact formulas for these quantities are of little concern. They are given for refer- 

See, for example, Reference 10, Section 10.8. Although the method used there is perfectly valid, 
the detailed formulas of Section 10.8 cannot be trusted. The entire section is studded with sign errors. 
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ence in the Appendix. We emphasize that Eq. (11) is not exact but is limited to the 
terms in h which are linear in the gradients. The only real novelty in Eq. (11) is the 
last three terms, which arise because there are no derivatives with respect to R0 and P0 
in L r .  

Returning to Eq. (9), we see that by expanding Eq. (5) to terms linear in the 
gradients 

A :-  p(eq)[1 + A" Vfl + B : V u  + ~ C~" VTv~] (12) 
L c~ .1 

VT = V -- VT ~--~ 

so that 

V0A=/3Fop(eq'(1 + A . V f l + B : V u + ~ C ~ - V T v ~ , ) ~ ,  

+ p(eq> (Vo A �9 Vfi + y VoG �9 %~)  (13) 

where A, B, and C are functions of the phases of  all the particles present, but B does 
not depend on Ro �9 Putting this into Eq. (7), we see that we have to evaluate quantities 
such as 

<Fo(t) FoU>, <FoVU> (14) 

where the brachets (...> mean equilibrium average, and where U is A, B, or C. 
Since p(eq) describes a homogeneous isotropic system, the only one of these terms 
which need not vanish is 

<Fo(t) Fo(0) B> : Vu (15) 

since there are no isotropic numerical tensors of odd order. B is given by the formula 

B = fl ~_, P / R d m j  (16) 
j :#0 

The term in S in Eq. (11) as well as the last term in this equation also give no 
contribution to Eq. (7) for the same reasons of isotropy. Therefore, putting Eqs. (9), 
(10), and (11) into (7), we obtain 

[G(, o 

v~ %.,] (17) + ~ ( t  - r ) -  - ~ -  + y~ J~(t - t ' ) .  pl(t') dr  

In Eq. (17) 

G(r = <Fo(r G(O)> + (Fo(r Fo(O) B>- Vu 

~ ( r  = t~<ro(r Q(o)> 

J~(~-) = <Fo(~- ) j~(0)> 

(18) 

(19) 

(20) 
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and j~, the current density of component ~, is given by 

j~(r) = ~ 8(Rj -- r) (21) 
k=x m~ 

In the limit of infinite dilution of B-particles G, ~ and J~ will be very rapidly 
decaying functions of r, and one may write 

~ Po - Muq v/3 + (22) 

where ~', 7, and the q~ are integrals of G, ~ and J~ respectively from 0 to oo. We 
write them as scalars, now recognizing that they are equilibrium averages in an 
isotropic system. However, when account is taken of the interactions between B-par- 
ticles, these functions may have a slowly varying component, in first approximation 
proportional to the concentration of the B-particles, rendering the reduction from. 
Eq. (17) to (22) less accurate. This has been discussed in I. 

Thus we see that the Fokker-Planck equation for nonuniform systems, Eq. (22), 
is distinguished from that for uniform systems by (a) the occurrence of new coefficients 
~? and ~b~, and (b) by the fact that the friction coefficient ~' has an extra term propor- 
tional to the velocity gradient Vu. The streaming operator ~ contains a term 
(F0)~. 8/8P 0 . (Fo)~ will again be linear in Vfl and Vrv~. It will not depend on Vtt 
for reasons of isotropy, It has been analyzed by Zubarev and Bashkirov, (7) and 
Misguich. (a) 

The additional term in the friction constant is the time integral of Eq. (15). We 
conjecture that it is not likely to be of much importance, for two reasons. First, it 
contains the small quantity Vu (small by hypothesis, so that linearization is valid). 
Second, the coefficient of Vu is a correlation function of four variables [cf. Eq. (16)] 
which vanishes for t ---- 0 and t--~ oo. Because it expresses a more complicated 
correlation than does (F0(t) Fo(0)), it is never likely to become appreciable in size. 

The term in Eq. (22) involving ~ agrees with that of Zubarev and Bashkirov. (7) 
The terms in ~b~ do not appear in their treatment because they have implicitly assumed 
a one-component solvent and have treated the B-particles at infinite dilution only. 

Our equation is in agreement with that of Nicolis (~) (given in full in his thesis, 
though not in the published paper), who does treat the case of a multicomponent 
solvent, though the B-particles are at infinite dilution. 

The term in ~' proportional to Vu appears to be stated explicitly here for the 
first time, though it is implicit in the works discussed above. 

The theory presented here should be valid not only at infinite dilution, but for 
finite concentrations of the B-particles. It will be possible to derive density expansions 
for ~/and ~ .  We shall not carry out the expansion in detail since it is so similar to 
that carried out for ~ in I. Of course, when the B-particle concentration approaches 
that of the solvent, the expansion of the exponential in Eq. (4) in powers of LB is 
no longer a good approximation. To draw an analogy with the theory of gases, one is 
leaving the regime of the Rayleigh gas and entering that of the Lorentz gas. 
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The main  results of  this paper  are the derivation of  Eq. (22) in a manner  analogous 
to that  used in the homogeneous  case and the extension to the case o f  mixed solvents 
with possible diffusion fluxes. The theory is thus applicable when there is a non- 
vanishing concentrat ion of  B-particles. 

A P P E N D I X  

For  the case of  a system with no external fields and with pair  forces Vbetween the 
consti tuent molecules, the heat  flow vector  is given by 

, _. p~2 
Q(r)  = ~. P-~-J" Ll2-~-mj. --h(Rj)l 1 

�89 ~ (Vkj 1 - -  RjkVR~Vjk) + V0~ 1 - -  RsoVjVjo] 3(Rj - -  r) (A.1) + 
j@k 

The m o m e n t u m  flux vector is given by 

In  these formulas  the sums are over all particles except particle 0. 
For  the diffusion flux of  species we have 

j~ = ~ ~ - ~ " ~  P~' S(RI~ -- r) (A.3). 

and, in all o f  these formulas  

Pi '  = Pi  - -  m i n i  
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